Kernel Principal Angles for Classification Machines with Applications to Image Sequence Interpretation

نویسندگان

  • Lior Wolf
  • Amnon Shashua
چکیده

We consider the problem of learning with instances defined over a space of sets of vectors. We derive a new positive definite kernel f(A,B) defined over pairs of matrices A,B based on the concept of principal angles between two linear subspaces. We show that the principal angles can be recovered using only inner-products between pairs of column vectors of the input matrices thereby allowing the original column vectors of A,B to be mapped onto arbitrarily high-dimensional feature spaces. We apply this technique to inference over image sequences applications of face recognition and irregular motion trajectory detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Face Recognition for Group Classification Based on Kernel Principal Component Analysis and Support Vector Machines

Face Recognition system is a machine that is used to recognize people based on their face. In many practical applications, this face recognition system is used to determine whether somebody belongs to certain group or not. This paper presents a face recognition method for group classification by combining kernel principal component analysis (KPCA) and support vector machines (SVM). By using the...

متن کامل

ISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion

Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...

متن کامل

Learning over Sets using Kernel Principal Angles

We consider the problem of learning with instances defined over a space of sets of vectors. We derive a new positive definite kernel f (A,B) defined over pairs of matrices A,B based on the concept of principal angles between two linear subspaces. We show that the principal angles can be recovered using only inner-products between pairs of column vectors of the input matrices thereby allowing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003